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(Recetved 16 May 1955)

When the electron density of a crystal is projected on
to a plane, it often happens that the separation of two
projected atoms is so small that they give rise to only one
compound peak, which is more or less elongated in the
direction of separation of the constituent atoms. This
problem is often attacked in the following way. From well-
resolved peaks in the same projection, an atomic profile
is obtained, and two such profiles are summed, for
various separations of their peaks, until the resultant
profile resembles most closely the profile of the observed,
compound peak, taken parallel to the line of centres.
The present note describes an analytical method of deal-
ing with the problem in the special case of two identical
atoms which is less laborious and which uses the computed
electron-density values in the neighbourhood of the com-
pound peak in a more systematic way.

Suppose the constituent atoms to be situated at the
points P, and P,, giving rise to a resultant peak at P,
the mid-point of the line joining P, and P,. Let the co-
ordinates of Py, P,, and P, be (2, ¥,), (73, ¥,) and (z,, ¥,)
respectively, referred to rectangular axes. Let it be as-
sumed that each of the constituent atoms can be ade-
quately represented by a Gaussian function

o(r) = go exp [—pr?]. (1)

Then the resultant electron density at a point (z, y) is
given by

e(x, y) = @o exp [—p{(x—x,)*+(y—y,)*}]
+0¢ 0xp [—p{(x~2.)2 +(y—¥2)%}] . (2)

If the separation of the constituent peaks be written 24,

then
%y = Zo+Azy Yy = Yo+4dy } (3)

Ty = Tg—Apy Y2 = Yo—4y

where 4., 4, are the components of 4, and the expression
for the electron density becomes

o(x, y) = 200 exp [ —p{(x—2)*+ (y —¥0)*+4%}]
x cosh 2p{(x—wxe)dz+(y—yo) 4y} . (4)

Taking natural logarithms of both sides, there results

In ¢(x, y) = Const. —p(@x—ze)* —p(y—Yo)*
+1n cosh 2p {(x—x) 4z + (y—yo)dy} - (5)
Now,
In cosh u = u?/2—wu?/12+... . (6)

Hence, retaining only the first term in the expansion,
(5) becomes

In o(z, y) = Const.—p (1 —2p4%) (x —z,)?
—p(1=2p4}) (y—yo)* +4p*d: Ay (x—x) (y—yo) »  (7)

from which it is evident that, to this degree of approxima-
tion, the contours of constant In g are ellipses with centre
Py(g, y4). The eccentricity of these ellipses is given by the
simple expression

e=)(2p)d. (8)

The procedure to be adopted is as follows. The natural
logarithms (or numbers proportional to them) of the nine
electron-density values nearest the compound peak are
fitted by an elliptic paraboloid, and the peak co-ordinates
(20> ¥o)» the eccentricity (¢) and the angle () which the
major axis of the ellipse makes with the positive direction
of the z axis are obtained. A systematic procedure for
doing all this in the general case, where the electron
density has been computed at the points of a non-
rectangular mesh, has been described in detail by Ladell
& Katz (1954).* The value of 4 is then calculated from
(8), the values of 4, and 4, are obtained from 4 and the
value of 6, and finally the co-ordinates of the constituent
peaks are found from (3), using the calculated peak co-
ordinates (%,, ¥). Using an electric desk -calculating
machine the whole process takes about half-an-hour.

It may be pointed out that it is not strictly speaking
necessary to use the logarithms of the electron-density
values. If the right-hand side of equation (2) is expanded
and terms of the second and higher order are neglected,
equations (7) and (8) can still be obtained, but the
approximation is decidedly inferior.

This point was demonstrated by setting up two Gaus-
sian atoms with p = 5, and computing the resultant
electron density at nine points of a square mesh of side
0-2 A. The calculation was performed for two different
values of the peak separation, namely 0-212 A and
0-576 A, with the line of centres randomly oriented with
respect to the mesh in each case. For identical Gaussian
atoms, the critical separation, i.e. the separation below
which they appear as one peak, is given by )/(2/p), which,
for p = 5, amounts to 0-632 A. Using logarithmic values
and proceeding as detailed above, the method gave 0-210 A
and 0-544 A; using the electron-density values directly
gave 0-166 A and 0-504 A. The superiority of the logarith-
mic method is obvious.

Apart from the basic approximation involved in the
neglect of higher-order terms in the expansion of In coshu,
the method in practice is subject to errors from the fol-
lowing sources:

(i) Inapplicability of the Gaussian form (1), either due
to an inaccurate knowledge of the parameter p, or due
to a lack of spherical symmetry in the atom. With regard
to the first, it is probable that the best value of p is to be
obtained, not by taking sections through well-resolved
peaks in the projection, but by computing the finite
Hankel transform of the appropriate atomic scattering
curve, since the concept of ‘well-resolved peak’ is not at
all precise. With regard to the second, it is clear that any
appreciable degree of non-sphericity in the atoms will
invalidate the procedure entirely.

(ii) Errors in the computed values of the electron
density due to errors in the observed structure factors.
This affects the determination of the constants of the

* In this paper there is an error in equation (3) giving
the values of the constants in the elliptic paraboloid. There
the value of C is given as }(g—4sd)/t, whereas it ought to
read }(g—8s4)/t.
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elliptic paraboloid by the method of Ladell & Katz,
which in turn affect the determination of (xy, ¥,), &,
and 6.

(iii) The influence of the other peaks in the projection
on the electron-density values in the vicinity of the com-
pound peak. If a reliable atomic profile has been obtained,
as mentioned under (i) above, then this effect may be
corrected for.

The basic approximation involved in the method can,
of course, be improved by including additional terms in
the expansion of In cosh u; but taking into account only
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the next term, namely —u%/12, and dealing only with the
simple case in which the electron density has been com-
puted at the points of a square mesh, the required cor-
rection term to equation (8) is much too cumbersome to
be of any practical value. In any event, in view of the
other sources of error present, it is doubtful whether any
such attempt at correcting (8) would be worth while.
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If the Wilson (1942) method of obtaining the scale factor
is to give a reliable value, the Patterson peak at the origin
must not contain any contributions arising from the
spreading out of near-by peaks. In an earlier communica-
tion (Corey, Donohue, Trueblood & Palmer, 1952), which
dealt with the interpretation of the Patterson function
of air-dried lysozyme chloride, we described briefly a
procedure for modifying the Wilson method for applica-
tion to cases in which a very large temperature factor
results in a considerable overlapping of peaks arising from
short interatomic distances with the Patterson peak at the
origin. The procedure, of course, involves the estimation
of the total height contributed by these peaks at. the
origin in Patterson space. Our attention has been called
(Crick, 1953) to an error in our treatment. It is the pur-
pose of this note to correct this error, to restate the
problem, and to indicate a method for its possible solu-
tion. Since our original treatment contained several
minor ambiguities with regard to notation, we now
define the following terms:

R = distance from the center of a Patterson peak to
the origin.

P;i(r) = height of a Patterson peak (due to atoms 7
and j) at a distance » from the center of the peak
(spherical symmetry assumed).

P(u, v, w) = value of Patterson function at point

wo(us v, w).

Thus the height of the Patterson peak at the origin is
the sum of two terms:

P(0,0,0) = 3 Py(0)+ X X Py(R) .
K t 7
As before,
Pyj(r) = Z;Z;(2n/B)*? exp [ —2n%2/B],
* Contribution No. 1886 from the Gates and Crellin Labora-
tories.

t Agricultural Research Service, U.S. Department of
Agriculture. Article not copyrighted.

so that
2 Py(0) = (22/BPt 3 72,
i i

and

— o
3 3 Py(R) = (2/BYPZ 3. Z; S exp [—2n%?/BIdN (@),
i S 0
where N(z) is a function which gives the number of atoms
within a distance 2 of each atom. Our previous treatment
was in error in that N(z) was assumed to be uniform
(equal to 0-25x%), that N (x)dz was used instead of
dN (z), and that 3 Z? was used in place of the always
2

smaller Z 2 Z;. Since the value of the Patterson function

13
at the origin is also given by
1 1
P(0,0,0) = = 3 k|F'|{u+= |F_2,,
( 0 0) thkl‘ l [hll+ 74 lplooo

where Fj; are the observed relative structure factors,
and k is the scale factor, we may equate the two ex-
pressions, and solve for k, provided that both N(x) and
B can be evaluated from other considerations. N () can,
in principle, be obtained from a (non-uniform) radial
distribution function derived from some appropriate
model.

The function N(x) must be evaluated for values of =
extending from zero to a maximum value beyond which
there is no significant overlap of the P;;(R) with P(0,0,0).
If B is small, as for ordinury crystals, there is no overlap;
if B is large, then the maximum value of 2 will be so
great that the function N(z) may be, in practice, difficult
to evaluate. The accuracy of the scale factor will depend
upon the accuracy with which B and N(x) have been
estimated.
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